import numpy as np
import pandas as pd
df_obj = pd.DataFrame(np.random.randn(5,4), columns = ['a', 'b', 'c', 'd'])
df_obj
a | b | c | d | |
---|---|---|---|---|
0 | -0.281460 | -0.458650 | -1.102619 | 0.226367 |
1 | -0.045202 | -0.801324 | -2.910940 | -1.249168 |
2 | 1.260569 | -0.262852 | 1.348291 | -0.103332 |
3 | -0.688225 | -0.658354 | -1.498003 | -1.288892 |
4 | -0.415888 | 2.523040 | 0.107214 | -0.849228 |
df_obj.sum()
a -0.170205
b 0.341860
c -4.056056
d -3.264252
dtype: float64
df_obj.max()
a 1.260569
b 2.523040
c 1.348291
d 0.226367
dtype: float64
df_obj.min(axis=1)
0 -1.102619
1 -2.910940
2 -0.262852
3 -1.498003
4 -0.849228
dtype: float64
df_obj.describe()
a | b | c | d | |
---|---|---|---|---|
count | 5.000000 | 5.000000 | 5.000000 | 5.000000 |
mean | -0.034041 | 0.068372 | -0.811211 | -0.652850 |
std | 0.760118 | 1.387206 | 1.618056 | 0.684416 |
min | -0.688225 | -0.801324 | -2.910940 | -1.288892 |
25% | -0.415888 | -0.658354 | -1.498003 | -1.249168 |
50% | -0.281460 | -0.458650 | -1.102619 | -0.849228 |
75% | -0.045202 | -0.262852 | 0.107214 | -0.103332 |
max | 1.260569 | 2.523040 | 1.348291 | 0.226367 |