tynbl.github.io

Pandas的DataFrame如何按指定list排序

import pandas as pd
s = pd.Series({'a':1,'b':2,'c':3})
s
a    1
b    2
c    3
dtype: int64
s.index
Index(['a', 'b', 'c'], dtype='object')
list_custom = ['b', 'a', 'c']
list_custom
['b', 'a', 'c']
df = pd.DataFrame(s)
df = df.reset_index()
df.columns = ['words', 'number']
df
words number
0 a 1
1 b 2
2 c 3

设置成“category”数据类型

# 设置成“category”数据类型
df['words'] = df['words'].astype('category')
# inplace = True,使 recorder_categories生效
df['words'].cat.reorder_categories(list_custom, inplace=True)

# inplace = True,使 df生效
df.sort_values('words', inplace=True)
df
words number
1 b 2
0 a 1
2 c 3

指定list元素多的情况:

若指定的list所包含元素比Dataframe中需要排序的列的元素,怎么办?

list_custom_new = ['d', 'c', 'b','a','e']
dict_new = {'e':1, 'b':2, 'c':3}
df_new = pd.DataFrame(list(dict_new.items()), columns=['words', 'value'])
print(list_custom_new)
df_new.sort_values('words', inplace=True)
df_new
['d', 'c', 'b', 'a', 'e']
words value
1 b 2
2 c 3
0 e 1
df_new['words'] = df_new['words'].astype('category')

# inplace = True,使 set_categories生效
df_new['words'].cat.set_categories(list_custom_new, inplace=True)

df_new.sort_values('words', ascending=True)
words value
2 c 3
1 b 2
0 e 1

指定list元素少的情况:

若指定的list所包含元素比Dataframe中需要排序的列的元素,怎么办?

注意下面的list中没有元素“b”

list_custom_new = ['d', 'c','a','e']
dict_new = {'e':1, 'b':2, 'c':3}
df_new = pd.DataFrame(list(dict_new.items()), columns=['words', 'value'])
print(list_custom_new)
df_new.sort_values('words', inplace=True)
df_new
['d', 'c', 'a', 'e']
words value
1 b 2
2 c 3
0 e 1
df_new['words'] = df_new['words'].astype('category')

# inplace = True,使 set_categories生效
df_new['words'].cat.set_categories(list_custom_new, inplace=True)

df_new.sort_values('words', ascending=True)
words value
1 NaN 2
2 c 3
0 e 1